S. is sightly coli

Menoufia University Faculty of Engineering, Shebin El-Kom Electrical Engineering Dep. Academic Year: 2015-2016 First Semester

Subject/Code:Electrical Machines(2)/ELE 312 Time Allowed : 3 hours Exam Date : 9 / 1 / 2017 Total Marks : 100 marks

1. 1.

Allowed Tables and Charts: (None)

Answer all of the following

Question no.1		20
<i>a</i>)	 A synchronous generator, which is synchronized and connected to 11000 V, 50 c/s infinite bus bars, has to supply 3000 kW at 0.8 lagging power factor. It has a synchronous reactance of 15 Ω and an armature resistance of 1 Ω. Find: (i) The value of the machine E.M.F in this case, and (ii) The value of E.M.F at which the machine would supply the same power at unity power factor. (iii) If the excitation voltage in (ii) is decreased by 25%, find the maximum power and the corresponding current and power factor which the machine would deliver to the bus bars before it breaks out of synchronism. 	15
b)	Discuss and draw the constant power loci of armature current and excitation voltage of the synchronous generator.	5
Question no.2 15		15
a)	 Two identical alternators operating in parallel have the following data: The first alternator: rated power 2500 kW, frequency drops from 60 Hz at no- load to 58 Hz at full-load. The second alternator: rated power 2500 kW, frequency drops from 60 Hz at no- load to 57.5 Hz at full-load. Speed regulation of prime-movers is linear in each case, calculate: (i) How a total load of 4000 kW is shared by each alternator. (ii) The operating bus-bar frequency. (iii) The maximum load that these two units can deliver without overloading either of them. Define the voltage regulation of an alternator. With the aid of the phasor diagrams, 	10
-/	discuss the factors which affected on it.	
Qu a)	 <u>estion no.3</u> A 6600 V, 3-phase, Y-connected synchronous motor draws a full-load of 80 A at 0.8 power factor leading. The per phase armature resistance is 2.2 Ω and synchronous reactance 22 Ω. If the constant losses of the machine are 3200 W, calculate : (i) The induced emf. (ii) The output power. (iii) Efficiency. 	<u>15</u> 10
<i>b)</i>	Explain how the synchronous motor can be started and driven the mechanical load.	5

Question (4)

(4-a) Explain a starting method for three phase wound rotor induction motor. (6 Marks)

(4-b) Draw the circle diagram of a 10-hp, 200-V, 50 Hz, 3 phase slip ring induction motor with a star connected stator and rotor. The winding ratio is unity. The stator resistance is 0.38 ohm and the rotor resistance is 0.24 ohm. The tests readings are; No-Load: 200-V, 7.7-A, 0.195 pf, Short-circuit: 100-V, 47.6-A, 0.454 pf. Find; (a) starting torque. (b) maximum torque and its slip. (c) maximum power factor. (d) maximum output power. (10 Marks)

Question (5)

(5-a) Discuss a suitable method of speed control for three phase squirrel cage induction motor loaded by a fan load. (6 Marks)

(5-b) Draw the circle diagram of a 10-hp, 200-V, 50 Hz, 3 phase slip ring induction motor with a star connected stator and rotor. The winding ratio is unity. The stator resistance is 0.38 ohm and the rotor resistance is 0.24 ohm. The tests readings are; No-Load: 200-V, 7.7-A, 0.195 pf, Short-circuit: 100-V, 47.6-A, 0.454 pf. Find; (a) starting torque. (b) maximum torque and its slip. (c) maximum power factor. (d) maximum output power. (10 Marks)

Question (6)

(6-a) Discuss the operation and characteristics of single phase induction

motor type who has a higher starting torque.

(6-b) Discuss the operation and characteristics of deep bar induction motor.

(6 Marks)

(6 Marks)

(6-c) Discuss the operation and characteristics of AC series motor.

(6 Marks)

Good LuckProf. Dr. Fathy Abdel Kader Prof. Dr. Salwa Tahoun =